¥\ Cornell University
i Computer Systems Laboratory

Leveraging Machine Learning to
Detect Performance Issues in Cloud
Applications

Meghna Pancholi, Yuan He, Siyuan Hu

PRESENTING SKELETON: CS|=:

1. Motivation

Why and how to predict performance issues in cloud
applications.

2. Solution

How we approach the problem by obtaining end-to-end
tracing, performance measurements, resource allocation
configuration, and implement deep learning on top of the
collected data to predict QoS violations in the near future.

MonNoLITHIC vs. MICROSERVICES CSI=:

= Monolithic applications: Built as a single unit

= Microservices applications: Broken into several
loosely-coupled self-contained components that have
bounded contexts. (Easier to update and deploy, only

need to provide APIs.)
o (O
\
"y -
oV o
[w][w

-’. -’. *lwlf) (L
oV oV | e

Monolith Architecture Microservices

DeBUGGING MICROSERVICES CS|:

= Difficulty: Different languages, spanning multiple
servers, large volume of requests, separate DBs. Need

to trace the evolution of a request through an
application’s life cycle and monitor performance.

= Solution: Distributed Tracing System(Track requests
as they pass through different microservices)

= Goal: Use distributed tracing to predict performance
(QoS violations) or resource saturation issues before
they actually occur.

WHY TRACING? C S|

» Cloud apps are governed by strict QoS constraints
in terms of throughput and tail latency, availability
and reliability.

= Vital to monitor the cloud application with tracing
to troubleshoot the services that are possible to
have a QoS violation.

» Ultimately, we want to be able to dynamically
re-allocate resources to prevent QoS violations.

ProJECT GOAL C S|

» Understand the interaction between microservices
and end-to-end applications.

» Design and use a distributed end-to-end tracing
system to collect performance and utilization
statistics.

» Use the tracing data to anticipate QoS violations
before they could occur with a ML model.

SYSTEM ARCHITECTURE: MoVvIE STREAMING SERVICE
A\

i

NGiNX

=
APACHE

Fig. 1: Compose Movie review

How To TrRACE CS|®:

= Popular tracing systems: Zipkin, SpringCloud,
OpenTracing

= Gather latency data to determine bottlenecks and
troubleshoot performance, efficiency, and security
problems

= Create Gantt charts to visualize request latency

& O

Z1PKIN
OPENTRACING

ReLATED WORK CS|®:
* Dapper

* Google’s Large-Scale
Distributed Systems Tracing

Infrastructure

* Created to understand
system behaviors for each

pc3
(Backend)

Path taken by a request X
through a simple system.

request through a

distributed system.

ReLATED WORK

= Zipkin < ? =
ZIPKIN

* Distributed Tracing System

* Collects timing data from microservices applications to
troubleshoot latency problems and analyze performance.

* Based off of the Google Dapper paper.
* Supports various languages as well as RPC debugging.

* Creates Gantt charts for requests and shows dependency
diagrams of how many traced requests went through each
application.

ReLATED WORK CS|H:
= The Mystery Machine Paper

* End-to-end performance analysis of large-scale
Internet Services

* Methodology to interpret performance tracing
results of millions of requests through the
Facebook Web pipeline.

* Uses this data to develop tools to optimize
scheduling and improve latencies of Facebook
requests.

* Provides preliminary data about hypothesized
methods before implementation.

REeELATED WORK CS|®:

Relationship Example Counterexample
The Mystery i | T a&"]
, — EEN.
Machine Paper sl | —
Exclusi or A
- (5 [A
» t (A]8[c] 4 [al8[c]
Pipeline t (A8 to[c]aTe’

Uses traces to create causal relationship models:

Happens-Before — time stamp for B is greater than or equal to
time stamp of A.

Mutual Exclusion — time intervals for A and B do not overlap.
Pipeline — a data dependency between pairs of segments in
two tasks t1 and t2.

STEP 1: GANTT TRACING

http POST

s | N .

! Load Balancer —
igoeracind

[SUAA

http POST

Coginc)

fastcgi

Front-

url, tmp_id texttmp_id tmp_id tmp_id
!!L'fe‘ !2 id
(=) "t%‘,., 2 g 0P

(Assigiatng compose
Phase

unique_id, review movie_id, unique_id

I i \

All arrows are Thrift

Leverage Thrift
logger to insert
timestamps around
each sub-service
Compose Review is
a one way request
(client to databases)

STEP 1: GANTT TRACING CSI=:

» Each request receives a unique identifier

* Organizes each request as it passes through the
Thrift microservices, MongoDB, Memcached, and
the Nginx web server

» Each microservice creates a log with start/end
time of its requests

» Logs are interleaved and composed in the end

STEP 1: CHALLENGES CSIE:

= Server synchronization:

* All requests have time stamps from the same
logical clock

e Standardizes start and end times from different
machines using TimeSync.

» Time Skew = Time Client — Time Server
* Allows us to see relationships between requests

= Not all microservices communicate over RPC (e.g.,
memcached, mongodb, nginx)

* Memcached + mongodb don’t have a request ID
* Rely on tcpdump to log latency in these services

STeEP 1: TRACING METRICS AND ITS VISUALIZATION

» For each request, start and end times are gathered and
processed to create Gantt chart visualizations (horizontal bar
charts we can use to visualize the requests)

» Gantt charts show:

* Queueing times F (; ;
* Sequence of microservices called _§ —— ?’E)
* Time spent in each microservice 1 m:"" . mmjm,g

* Relationships between requests = = = (¢ .,..:c.

» How we may need to modify \' m::g

resource allocations L N N

STEP 1: TRACING NETFLIX CoMPOSE REVEW C S|l
of clients = 4, # of requests = 100,000, QPS=5000

1 Request

Memcached Movie DB Check
Memcached Movie DB Prepend
MongoDB Movie DB Check
MongoDB Movie DB Prepend
Memcached Review Storage

Orange bars:
queuing time

STEP 1: NETFLIX ComPoseE REVIEW — INCREASING QPS

Gantt_netflix_compose_review_4_100000_500_s1000_all.png

Number of clients: 4
Number of requests: 100,000
QPS: 500

The widening of the orange
bars indicates the growth of
the queues as the simulator
receives more and more
requests.

More queries per second also

show much larger queues e = ——
than fewer queries per
second.

STEP 1: NETFLIX ComPoseE REVIEW — INCREASING QPS

Number of clients: 4
Number of requests: 100,000
QPS: 5,000

Much larger queuing times
than smaller queries per
second experiments as
indicated by long orange bar.

Waterfall format shows
relationship between

requests.

nnnnn
eeeeeeeeeeeee

STEP 1: GANTT TRACING ExP. CONCONCLUSION CSIE:

» As QPS increases, queuing time increases
drastically.

» While processing, most of the time is spent in
MongoDB and Memcached.

STEP 2: PERFORMANCE & UTILIZATION STATISTICS

Measurement

= System performance: Measured with tail latencies

(95th, 99th).
» Resource utilization: Measured with CPU%.

Plan
1. Scale out the system (using CPU%) to find an ideal
core configuration for each service that services are

equally loading/bottlenecking the system.
2. Understand how tail latency is correlated with

CPU%.

STEP 2: ISSUES AND THEIR SOLUTIONS CSI=:

= Issue 1: Tail latency graphs are having periodic spikes

= The spikes are presumably due to a non-uniformly
distributed query input.

Request's distribution

200 == ReviewStorage

== MovieReviewDB
AssignRating

150 == ProcessText

== UserReviewDB

== ComposeReview

100 == ProcessMovielD

50

number of requests/(100ms)

Time(100ms/unit)

STEP 2: ISSUES AND THEIR SOLUTIONS CS|E:

= Solution: Switch the client side script from the custom
loader to wrk2 for stable input distribution.
» Fig. 1&2: Nginx 6 - Memcached 1 - MongoDB 5, QPS = 2000,

95th Tail

)

atency (ms

b, SNSRI S
L N e , é %

Time(s)

Time(ms)

® O
Erring Periodic Spike No Periodic Spike

STEP 2: ISSUES AND THEIR SOLUTIONS CS|E:

= Issue 2: Microservices are prone to dropping requests.
= Solution: Double the cores for microservices that deals with the

review storing phase.
= Fig. 1&2: Ngx 6 - MMC 1 - MDB 5, QPS = 2000, 95th Tail

Microservice CPU%

80
60 \
| \/WV

ABSAY o,

\/

time(s) \ % ’ time(s)

® ® |arge Queues: ® ® Smaller queues:

Prone to drop requests Smoother CPU%

STEP 2: IDEAL RESOURCE CONFIGURATION CS|=:

For each application, determining the ideal
resource configuration (the ratio of resources
allocated to each microservice) so that all
microservices saturate relatively at the same time.
This allows us to efficiently utilize our resources in
a minimal way.

Important to look at both CPU utilization and
latency.

Use this as starting point before adding
interference, ensuring QoS violation is due to
external interferences, instead of caused by the
system itself.

STEP 2: ADDING INTERFERENCE CSI=:

» Understanding, reducing, and managing
interference between co-scheduled processes can
significantly impact the design of a large-scale
system.

= Therefore, we try to inject interference into each
microservice, and record their performance and
resource utilization accordingly.

STEP 2: ADDING INTERFERENCE - APPROACH C S| B

= Using iBench, a workload suite that helps quantify
the interfering intensity (linearly increasing to
100%). Interference sources span from CPU, cache
hierarchy, memory, storage, and network
subsystems.

= Now experimenting with CPU interference.

STEP 3: MACHINE LEARNING

Number of requests:
Time range: 98 ms

Latency (ms)

CSI=:

» Idea: Use a sliding window to predict a future QoS violation

67.5

65.0
62.5
60.0 1
57.5
550 ‘at
52.5 -
50.0 -

47.5 1

3000

Nginx Latency Peak

Number of requests: 30000
Time range: 1001 ms

{4 Nginx Latency Peak

Qo0S: 65 ms

70

Latency (ms)
8 8 8 b

820

840 860 880
Time (ms)

10 -
0* “ :i . "lll Al l' 4 l? |i dad . . * & |.|.'
900 800 1000 1200 1400 1600
Time (ms)

QPS=30K

STEP 3: MACHINE LEARNING CS|E:

» Plan: Use a deep neural network to predict which
microservices are likely to cause a QoS violation in the near
future, and re-allocate resource/re-balance requests
accordingly to avoid the violation.

® .
Input: A time batch @ : O.utput. o
of performance . o\ o ® |- Binary prediction
measurements for g ® o O % on QoS violation
each microservice. g ® ® @ % for each
~ é : ‘ : § microservice in
the near future.
Service ® ©
. /Time | ® ® | (0,0,1,0, ...)
Measurement

E.g. Queuing Time, QPS,
CPU%, Tail Latency Hidden Layers

FuTurRe WORKS C S|

= Continue to run experiments to refine the
ideal resource configuration.

» Inject interference into the microservices to
collect spiky training data with QoS
violations.

» Continue with the deep learning experiment,
and tune the input dimension and neural
network architecture to generate reasonable
predictions.

REFERENCES C S|

» Google Dapper Paper

» The Mystery Machine: End-to-end Performance
Analysis of Large-scale Internet Services

= Distributed Tracing For Polyglot Microservices

» Microservices in Production: 5 Challenges You
Should Know

THANK YOU!

